-	٠	7	
7	٦	1	
	1	1	
	=		ᅱ

MATHEMATICS HSSC-I SECTION - A (Marks 20)

Time allowed: 25 Minutes

Section – A is compulsory. All parts of this section are to be answered on this page and handed over to the Centre Superintendent. Deleting/overwriting is not allowed. Do not use lead pencil.

حد، اول لازی ب-اس عجوابات ای صفی درے کرنافم مرکزے والے کرید کاف کرووبارہ العدى اجالت ويس ب-لسيذ بنل كاستعال منوع ب-

٧	ersic/	n No).			RC	DLL N	υмв	ER	
3	1	1	1							
0	0	0	0		0	0	0	0	0	0
1	•	•	•		1	1	1	1	1	1
2	2	2	2		2	2	2	2	2	2
•	3	3	3		3	3	3	3	3	3
4	4	4	4		4	4	4	4	4	4
(5)	(5)	(5)	(5)		(5)	(5)	(5)	(5)	(5)	(5)
6	6	6	6		6	6	6	6	6	6
7	7	7	7		7	7	7	7	7	7
8	8	8	8		8	(8)	8	8	8	8
9	9	9	9	10	9	9	9	9	9	9

Answer Sheet No. _

_ Invigilator Sign ہر سوال کے سامنے دیے گئے، کر یکو لم کے مطابق ورست دائرہ کو پر کریں۔

Fill the relevant bubble against e	Candidate							
Question	A	В	С	D	Α	В	С	Γ

	Question	Α	В	С	D	Α	В	С	D
1.	The multiplicative inverse of $-i$ is:	i	1	-i	-1	0	0	0	0
2.	What is the modulus of a complex number $(8-15i)$?	8+15 <i>i</i>	17	√161	-15	0	0	0	0
3.	The contrapositive of a conditional $p \to q$ is:	$q \rightarrow p$	$\sim q \rightarrow p$	$\sim q \rightarrow \sim p$	~ p → q	0	0	0	0
4.	Which structure in the following is true for the set of natural numbers under multiplication?	Groupoid	Semi group	Monoid	Group	0	0	0	0
5.	Which one of the following matrices is singular?	$\begin{bmatrix} 1 & -4 \\ 2 & 8 \end{bmatrix}$	$\begin{bmatrix} 1 & 4 \\ \sqrt{4} & 8 \end{bmatrix}$	$\begin{bmatrix} 1 & -4 \\ \sqrt{2} & -8 \end{bmatrix}$	$\begin{bmatrix} -1 & 4 \\ 2 & 8 \end{bmatrix}$	0	0	0	0
6.	Rank of matrix $\begin{bmatrix} -2\\0\\-1 \end{bmatrix}$ is:	0	1	2	3	0	0	0	0
7.	For what value of k , roots of $kx^2 - 12x + 4 = 0$ are equal?	9	-9	9.5	18	0	0	0	0
8.	One of the multiplicative factors of $(x^4 - 5x^2 + 4)$ is:	x+2	x-3	x+3	x+4	0	0	0	0
9.	Which one of the following represents $\frac{x^3 + 2x^2 + 3}{(x^2 + 1)(x + 4)}?$	Proper fraction	Improper fraction	Cubic polynomial	Polynomial	0	0	0	0
10.	For what value of $^{\mathcal{X}}$, the numbers $\frac{1}{2},\frac{1}{5},\frac{1}{x}$ are in hormonic progression?	-10	-8	8	10	0	0	0	0
11.	If $\binom{n}{8} = \binom{n}{12}$, then value of n is:	4	8	12	20	0	0	0	0

							-		
	Question	Α	В	С	D	Α	В	С	D
12.	The probability of getting same upper face on throwing two fair dice simultaneously is:	1 12	$\frac{1}{6}$	$\frac{1}{4}$	$\frac{1}{2}$	0	0	0	0
13.	The coefficient of third term in the expansion of $\left(x - \frac{1}{x}\right)^8$ is:	$\begin{pmatrix} 8 \\ 0 \end{pmatrix}$	(8) 1)	$\binom{8}{2}$	$\binom{8}{3}$	0	0	0	0
14.	In which quadrant, terminal side of the angle $-510^{\rm o}$ lies?	1st	2 nd	3rd	4 th	0	0	0	0
15.	$(\sin 5x + \sin 7x)$ is expressed in product form as:	2Sin6xCosx	2Cos6xSinx	2Sin6xSinx	2Cos6xCosx	0	0	0	0
16.	The value of $\cos(x+60^\circ)+\cos(x-60^\circ)$ is:	$\cos x$	$\sqrt{3}\cos x$	Cos 2x	0	0	0	0	0
17.	The period of $\frac{8}{7}$ Sec $(x-\pi)$ is:	$-\pi$	π	3π	$\frac{8\pi}{7}$	0	0	0	0
18.	What is the area of a triangle ΔABC , if $a=10,b=20$ and $\gamma=30^{\circ}$?	25√2	50√3	50	$\frac{100}{\sqrt{3}}$	0	0	0	0
19.	The value of $\cos\left[\frac{\pi}{6} + \cos^{-1}\left(-\frac{1}{2}\right)\right]$ is:	1/2	$-\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$-\frac{\sqrt{3}}{2}$	0	0	0	0
20.	The solution of a trigonometric equation $(\sin x + \cos x = 0)$ is:	-30°	-120°	45°	135°	0	0	0	0

——1HA-I 2311-3111 ——

ROL	ROLL NUMBER					

MATHEMATICS HSSC-I

Time allowed: 2:35 Hours

Total Marks Sections B and C: 80

Attempt any twelve parts from Section 'B' and any four questions from Section 'C' on the separately provided answer book. Write your answers neatly and legibly.

<u>SECTION – B (Marks 48)</u> Attempt any TWELVE parts. All parts carry equal marks. Q. 2

 $(12 \times 4 = 48)$

- If $Z_1 = 2 + 3i$ and $Z_2 = 4 + 2i$, then show that $(Z_1\overline{Z_2} + \overline{Z_1}Z_2)$ is a real number.
- (ii) Construct a truth table of a logical statement $(p \leftrightarrow q) \land (p \rightarrow q)$

(iii) Solve for
$$x$$
:
$$\begin{vmatrix} x & -1 \\ 5 & 1-x \end{vmatrix} = \begin{vmatrix} 1 & 0 & -3 \\ 2 & x & -6 \\ 1 & 3 & x-5 \end{vmatrix}$$

- If α, β are the roots of $x^2 + px + q = 0$, find the quadratic equation whose roots are $\frac{\alpha}{\beta}$ and $\frac{\beta}{\alpha}$.
- Using properties of the cube roots of unity, verify that $(1+\omega)+(1+\omega)^2+(1+\omega)^3=2\omega$ (v)
- Express $\frac{125+4x-9x^2}{(x-1)(x+3)(x+4)}$ in partial fractions. (vi)
- Second term of a geometric sequence is 9 and its fourth term is 1. Find sum to infinity. (vii)
- Insert six arithmetic means between 15 and -13. (viii)
- Prove that Sine is a periodic function and its period is 2π (ix)
- A die is thrown twice. Find the probability that sum of the upper face numbers is a prime number or an odd (x)
- Find the value of k, if the constant term in the expansion of $\left(2x^2 + \frac{k}{r}\right)^6$ is 960. (xi)
- If $\cos \theta = \frac{\sqrt{10}}{10}$ with $2\pi < \theta < \frac{5\pi}{2}$, then find values of the remaining five trigonometric ratios. (xii)
- $\cos 4x \cos x \sin 6x \sin 3x = \cos 7x \cos 2x$ (xiii)
- In an oblique triangle $\triangle ABC$ (with usual notations) a=6, c=12 and $\beta=124^{\circ}$. Apply law of cosines and law (xiv) of sines to find the values of b', α and γ
- $2 \tan^{-1} \frac{1}{2} + \tan^{-1} \frac{1}{7} = \tan^{-1} \frac{31}{17}$ (xv)
- Solve the trigonometric equation $\cos 5\theta + \cos \theta = \cos 3\theta$ where $\theta \in [0, \pi]$ (xvi)

Attempt any FOUR questions. All questions carry equal marks. Note:

- Use Cramer's rule to solve the system of linear equations. x + y z = 3; 2x y z = 1; 3x + y + 2z = 0Q. 3
- If three consecutive numbers in an arithmetic progression are increased by 1, 2 and 3 respectively, the resulting Q. 4 numbers are in geometric progression. Find the original numbers if their sum is 12.
- If $y = \frac{1}{4} + \frac{1.3}{4.8} + \frac{1.3.5}{4.8.12} + \dots$ then prove that $y^2 + 2y 1 = 0$ Q. 5
- Without using calculator, prove that $\cos 10^{\circ}.\cos 30^{\circ}.\cos 50^{\circ}.\cos 70^{\circ} = \frac{3}{16}$ Q. 6
- Solve the following system of equations: $5x^2 14xy + 9y^2 = 0$: $4x^2 - 3xy - 16 = 0$ Q. 7
- Solve triangles $\triangle ABC$ (with usual notations) if, Q. 8
 - $\alpha = 60^{\circ}$, $\beta = 15^{\circ}$ and b = 33(a)
 - $b = 23, c = 24 \text{ and } \alpha = 75^{\circ}$ (b)

MATHEMATICS HSSC-I SECTION - A (Marks 20)

Time allowed: 25 Minutes

Section – A is compulsory. All parts of this section are to be answered on this page and handed over to the Centre Superintendent.

Deleting/overwriting is not allowed.

Do not use lead pencil.

حقد الآل لازى ب_اس كي جوابات اى مقريد در كرناهم مركزك حوال كري كاك كردوباره كلعة كي اجازت وليس بيدارية بناس كاستهال منون ب

V	/ersi	on No	o		RO	DLL N	UMB	ER	
7	1	1	4						
0	0	0	0	0	0	0	0	0	(
1	•	•	1	1	1	1	1	1	(
2	2	2	2	2	2	2	2	2	(2
3	3	3	3	3	3	3	3	3	(
4	4	4	•	4	4	4	4	4	(
(5)	(5)	(5)	(5)	(5)	(5)	(5)	(5)	(5)	(
6	6	6	6	6	6	6	6	6	(
•	7	7	7	7	7	7	7	7	C
8	8	8	8	8	8	8	8	8	(8
9	9	9	9	9	9	9	9	9	(9

Answer Sheet No. _____

.... Invigilator Sign برسوال کے سامنے دیے گئے، کر یکو کم کے مطابق درست دائرہ کو پر کریں۔

-	Fill the relevant bubble against each of Question	A	В	С	Candidate S	A	В	С	
1.	What is the area of a triangle ΔABC , if $a=1,c=2$ and $\beta=60^{\circ}$?		$\frac{\sqrt{3}}{2}$	1/2	1	0	0	0	0
2.	The value of $Sin(\pi + Sin^{-1}x)$ is:	πx	x	-x	$-\pi x$	0	0	0	0
3.	Which one of the following is a solution of $\sin 2x + \cos 2x = -1$?	30°	45°	90°	0°	0	0	0	0
1 4.	If $z = -2 - 3i$ then, what is the value of $z - \overline{z}$?	6 <i>i</i>	-4	4	-6 <i>i</i>	0	0	0	0
5 .	The simplified form of i^{18} is:	-i	1	-1	i	0	0	0	0
6.	The converse of the conditional $\ \sim q \ \longrightarrow \ p$ is:	$\sim q \rightarrow p$	$q \rightarrow p$	$\sim p \rightarrow \sim q$	$q \rightarrow p$	0	0	0	0
7.	Which structure in the following is TRUE for the set of natural numbers under addition?	Semi group	Monoid	Group	Groupoid	0	0	0	0
8.	The determinant of a matrix $\begin{bmatrix} i & 0 & \sqrt{3} \\ 0 & i & \sqrt{3} \\ 0 & 0 & i \end{bmatrix}$ is:	i	-1	1	<i>−i</i>	0	0	0	0
.	Rank of matrix $\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$ is:	1	2	3	0	0	0	0	0
LO.	If (-1) is a root of $x^3 + px^2 - x + 2 = 0$, then value of P is:	-4	0	2	-2	0	0	0	0

	Question	Α	В	С	D	Α	В	С	D
11.	For what value of m , $(x^2 - 2mx - 3)$ has zero remainder, when divided by $(x - 3)$?	1	-2	2	-1	0	0	0	0
12.	For what value of B , $\frac{1}{x^2 - 1} = \frac{A}{x - 1} + \frac{B}{x + 1}$?	2	-1	$-\frac{1}{2}$	$\frac{1}{2}$		0	0	0
13.	If $a-3$, 6, $b+3$ are in arithmetic progression, then value of $(a+b)$ is:	6	12	18	0	0	0	0	0
14.	If $^{n}P_{2} = 30$ then, value(s) of n is/are:	6,-5	8	12	6,5	0	0	0	0
15.	The probability of getting two tails when two coins are tossed is:	1/6	$\frac{1}{4}$	$\frac{1}{3}$	1/2	0	0	0	0
16.	The middle term in the expansion of $\left(x - \frac{1}{2x}\right)^{12}$ is:	6 th	7 th	8 th	5 th	0	0	0	0
17.	If $\sin^2 \theta = \frac{1}{7}$ the value of $\sec^2 \theta$ is:	<u>6</u> 7	$\frac{7}{6}$	8 7	7	0	0	0	0
18.	$2\sin 7x\cos 3x$ is expressed in sum or difference form as:	$\sin 10x - \sin 4x$	$\sin 5x - \sin 2x$	$\cos 5x + \cos 2x$	$\sin 10x + \sin 4x$	0	0	0	0
19.	The value of $Sin(90^{\circ} + x) + Sin(90^{\circ} - x)$ is:	0	−2Sin x	−2Cosx	2Cosx	0	0	0	0
20.	The period of $3\cos\frac{x}{5}$ is:	10π	30π	$\frac{\pi}{5}$	5π	0	0	0	0

——1HA-I 2311-7114 HA —

ROLL	NUM	BER	
			$\neg \neg$

MATHEMATICS HSSC-I

Time allowed: 2:35 Hours

Total Marks Sections B and C: 80

NOTE: Attempt any twelve parts from Section 'B' and any four questions from Section 'C' on the separately provided answer book. Write your answers neatly and legibly.

SECTION - B (Marks 48)

Q. 2 Attempt any TWELVE parts. All parts carry equal marks.

 $(12 \times 4 = 48)$

(i) If
$$Z_1 = 3 + 4i$$
 and $Z_2 = 4 + 3i$, then show that $\left| Z_1 + \frac{1}{Z_2} \right| \cong 5$.

(ii) Construct truth table of a logical statement $(\sim p \rightarrow \sim q) \land p$

(iii) Show that
$$\begin{vmatrix} y+z & x & y \\ z+x & z & x \\ x+y & y & z \end{vmatrix} = (x+y+z)(z-x)^2$$

- (iv) If (-5) is a root of the equation $2x^2 + px 15 = 0$ and the equation $p(x^2 + x) + k = 0$ has equal roots, find values of p' and k'.
- (v) Using properties of the cube roots of unity, Show that $(x+y)^2 + (x\omega + y\omega^2)^2 + (x\omega^2 + y\omega)^2 = 6xy$
- (vi) Express $\frac{x^2 + 2x 1}{(x)(x+2)(2x-1)}$ in partial fractions.
- (vii) Which term of the arithmetic sequence $4, -4, -12, -20, -28, \dots$ is (-172)?

(viii) Show that
$$S_n = \sum_{k=1}^n (6k^2 + 4k - 1) = n(n+2)(2n+1)$$

- (ix) Prove that Tan gent is a periodic function and its period is π
- (x) A fair cubical die is rolled three times.
 - (a) Find the probability of getting a six all three times.
 - (b) Find the probability of getting no sixes.
- (xi) Find the value of k, if the constant term in the expansion of $\left(4x^2 + \frac{k}{2x}\right)^9$ is 84.
- (xii) If $\sin \theta = \frac{-\sqrt{15}}{15}$ and $\pi < \theta < \frac{3\pi}{2}$, then find values of the remaining trigonometric ratios.
- (xiii) If $\operatorname{Cos} ec\alpha = \frac{5}{3}$, where $0 < \alpha < \frac{\pi}{2}$ and $\operatorname{Sec}\beta = \frac{13}{12}$, where $\frac{3\pi}{2} < \beta < 2\pi$, then find the value of $\operatorname{Cos}(\alpha \beta)$
- (xiv) Two escribed circles of radii r_2 and r_3 are connected with triangle $\triangle ABC$. Using usual notations, prove that $(r_2 + r_3)\tan\frac{\alpha}{2} = a$
- (xv) Prove that: $2 \tan^{-1} \frac{1}{3} + \tan^{-1} \frac{1}{7} = \frac{\pi}{4}$
- (xvi) Solve the trigonometric equation $\sin 2x = \sqrt{3} \cos x$, where $0 < x < 2\pi$

SECTION - C (Marks 32)

Note: Attempt any FOUR questions. All questions carry equal marks.

 $(4 \times 8 = 32)$

- **Q. 3** Use Cramer's rule to solve the system of linear equations x + 5y 3z = -36; x + 4y + 2z = -11; 2x y = 7
- Q. 4 If 1,4 and 3 are added to three consecutive terms of a geometric progression, the resulting numbers are in arithmetic progression. What are the numbers if their sum is 13?

Q. 5 If
$$y = \frac{3}{4} + \frac{3.5}{4.8} + \frac{3.5.7}{4.8.12} + \dots$$
 then prove that $y^2 + 2y - 7 = 0$

- **Q. 6** Without using calculator, prove that $\cos 40^{\circ}.\cos 80^{\circ}.\cos 120^{\circ}.\cos 160^{\circ} = \frac{1}{16}$
- **Q. 7** Solve the following system of equations $6x^2 + 9xy + 3y^2 = 0$; $x^2 5xy + 6y^2 = 26$
- **Q. 8** Solve triangle $\triangle ABC$ (with usual notations) if,
 - (a) a = 7, b = 10 and c = 13
 - (b) $a = 25, b = 24 \text{ and } \gamma = 120^{\circ}$